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THE MOTION OF POINT DEFECTS IN SOLIDS* 

G.P. CHERBPANOV 

Irreversible deformations in solids (plasticity and creep) are explained, 
within the framework of the theory of elasticity, by the motion of line 
and point defects which are always present in the structure of a solid. 
The dislocations and cracks are regarded as line defects, hole-type defects 
(vacancies, pores, and cavities), and inclusion-type defects (imbedded 
atoms, foreign particles, and protons) are regarded as point defects. 

The method of invariant integrals represents the most universal method of determining the 
forces driving these defects. A very brief survey of the literature is given' first, followed 
by a discussion of inclusion-type point defects modelled by centres of dilatation. A formula 
for the driving force is obtained and certain interactions and motions of the inclusions are 
studied. Afterthis, hole-type defects are discussed, modelled by the asymptotic to a spherical 
cavity induced by an external field. A formula for the driving force is given and certain 
interactions and displacements of the holes are studied. The behaviour of a hole is found to 
be qualitatively different from that of a model vacancy adopted in the physical literature and 
described in terms of centres of compression. 

In 1951, Eshelby extended Maxwell's method of the theory of the electromagnetic field to 
obtain three invariant integrals of the theory of elasticity /l/ known later as J-integrals. 
However, neither Eshelby nor his successors could overcome the fundamental difficulty of the 
theory connected with the divergence of the invariant integrals at field singularities. 
Eshelby himself used the old energy formalism based onthe determination of the interaction 
energy (see in /2/) his theory of inclusions or the derivation of the Peach-Koehler formula 
for the force driving the dislocation). It is for this reason that later investigators ignored 
J-integrals; numerous books on dislocation theory (e.g. /3-?/) do not even mention them. Wide 
use of J-integrals began with the paper by Rice in 1968 /0/ in which he used the divergence 
theorem to prove directly the invariance of one of the J-integrals and used it to analyse the 
concentration of deformations near notches and cracks. In 1972 Landes and Begley used this to 
introduce a new constant Je as a characteristic of the onset of crack growth in elastoplastic 
materials /9/. 

In 1967 the author proposed, independently of the work done By Eshelby, another, more 
general, approach /lo/ enabling the invariant energy P-integral to be derived for any solid, 
taking the dynamic and volume forces into account (the J-integral can be obtained from it as a 
special case). In this approach the invariance of the P-integral becomes a trivial consequence 
of the law of conservation (using this invariance the author determined in /lO,llf the force 
r driving the crack with the help of various contours, namely of a circumference and a 
rectangle). Moreover, a general theory of fracture of solids was proposed in /lo/; the 
corresponding fundamental fracture constant was denoted by 7 (the constant I, introduced five 
years later is equal to 2Y). The approach was further developed by the author using numerous 
examples in /12-16/, in particular the theory of P-residues and the rule for P-integration 
were derived, enabling the divergent invariant integrals to be evaluated and hence enabling 
one to "work" with the singularities of a physical field. 

Below, a homogeneous isotropic elastic medium is consideredunderquasistaticconditions, 
whenthe deformations are small. In this case the law of conservation of energy can be written 
in the form 

PR = {((in, - ~~~u~,~n~)dZ (i, j, k = 1, 2, 3) 
x 

Here U is the elastic potential per unit volume, *ii,* are the stresses, tic are the 
displacements, Px are the components of the driving force (equal to the energy dissipated when 
the singularities of the elastic field within Z' are displaced by unit length along the axis 
=k ) . 

The motion of linear defects of dislocation and crack type is caused by the forces given 
by the Peach-Koehler and Irwin formulas, respectively; the formulas are derived with the help 
of (0.1) and the rule of f-integration by contracting r; into a singularity /lo-16/. The 
theory of point defects is given below. As regards the terminology, the term "invariant" 
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introduced by the author is equivalent to the term "independent ofthe integration path" used 
by Rice. 

1. Inclusion-type point defects. Examples of inclusion-type point defects are e.g. 
N or H atoms pentrating the metal matrix during smelting, atoms of alloying elements dissolved 
intentionally in metal in order to impart the necessary properties to it, impurity atoms, etc. 
They can move relative to the metal matrix by selfdiffusion, or under the action of external 
loads. 

We shall model inclusion-type defects centres of dilation described as follows /17/: 

Here R,$,e are spherical coordinates, u~~,u~~,cJ~~,u~~ denote the non-zero displacement 
and stresses, a is the radiusofthe centre of compression "core", g is the pressure exerted 
by the core on the elastic body, E is Young's modulus and v is Poisson's ratio. 

Using (0.1) and (1.1) we can show that in the case of an arbitrary homogeneous external 
stress field, the action of the driving force on the inclusion is equal to zero. Let us now 
suppose that the unperturbed elastic field has the following form (A is a given constant): 

aaJ" = As,, uio = --‘IaAvE-’ (zla - zaa + ~-%~a) (1.2) 
ua’ = -vAE-‘z,z,, ugo = A E-‘z,s, 

We will calculate the driving force for this case (directed along the x1 axis, since its 
components along the z2 and x1 axes are obviously zero). Using the invariance of the I'-intearal 
(0.1) we take as Z a paralellepiped formed by the edges x!,= f6, z1 = -&L, 
s/L-+0,6+00, L-+00. 

According to the rules of r-integral we obtain 

Here we have made use of the symmetry about the plane x3=0, and the 
when x9 = +6, n3 = -1 when zI) = -8, ,J~# = a& = 0 when z3 = fij. 

According to (1.1) we have 

Here r, 8, z are 

u~~~=u~=-~-(~+~cos~~) 

&=-+$-sin2$ 01.3 = + Trz, u29 = + ‘c,z 

s 
us,1 = - 

3 1+v Tqa+(z= xg, 9 = x1a + x22, R’ = r2 + z’) 

cylindrical coordinates and the angle $ is measured 
Using the relations (with x5 = 6) 

Ra = r2 + V, 6/R = cos*, rlR = sin $, x,!r = cos 8 

rdr = RdR = R2 tg $dv, dx,dz, = rdrdc) 

we obtain (1.3) using (1.4) and (1.2) 

r,= - 2E-lAr f (ha;- v& + Ex&)rdr de= 
0 0 

x/z 
Ic&FAqa* S [sin 4 (1 + 3 cm 2$) - 3~ sin 9 tg Q sin 29 + 

3(1+ ~)siPq]dq= 2nE-l(1 -v) &a3 

In the other special'case of an inhomogeneous external field 

UJIO = Bx,, UJ = u510 = --Bx, 

u10='/ZE-V3[x1* + vxza - (2 + v)x?] 

Ua O = --YE-‘Bx,xa, uao = -vE-‘Bs,x, 

analogous calculations yield 

21 zrs *L with a 

(1.3) 

relations ng = 1 

11.4) 

from the z axis. 

(1.5) 

(1.6) 
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r, =- 2n (1 - v) E--1Bqa3, r2 = r3 = 0 

We shall also quote the results of the calculations for the following two cases of an 
inhomogeneous external field (G is the shear modulus, and C and D are constants): 

0230 = cz,, q30 = -cs,, ulo = U20 =. 0 (1) 
u$'= 1/Z G-'C(Z,~ - x?) 

uzso= DXI, uio = - 'lzG-'Dxzxs (2) 
uzO =lj2 G-lD~l~I, u$'=~/~ G-'Dxlxz 

In both the above cases we have rl = I'* == rs = 0. 
According to the basic principle of r-integration /lo-14/ the driving force is equal 

to zero also when the external stresses are power functions x1,x2,x8 of second and higher 
order. 

The general case of an arbitrary inhomogeneous external stress field u~,~(z~,I~,~~) is 
obtained, as can be shown, by linear superposition of the basic special cases (after expanding 
the function aijo in a Taylor series). 

The final general result is 

I'k = 1,E-'AWaxk (k = 1, 2, 3) 

A = ~a*, u = ullo + us2O + usso, L1 = ?n (1 - v) 
(1.7) 

Thus the driving force acting on the inclusion is directly proportional to the gradient 
of the first invariant of the external stress tensor o.ljO(zlr~g,~g). Formula (1.7) is an analogue 
of the Peach-Koehler formula (in the theory of dislocations) and of the Irwin formula (in 
the theory of cracks). It can also be derived from expression (8.9) of the first equation 
of Sect.b, par.5 of /2/. 

Using (1.7) we will consider several basic problems. 

Interaction between the inclusions. Let one ofthe inclusions be situated at the origin 
of coordinates. According to (l.l), u = 0 in the stress field generated by it, and therefore 
from (1.7) we conclude that the inclusions do not interact with each other. 

Interaction between the inclusions and an edge dislocation. This problem was discussed 
in /3/ using the energy method. The results are naturally the same, but we see that the 
force approach is much simpler. Let the line of an edge dislocation coincide with the x8 
axis, and let its Burgers vector B be directed along the z1 axis. The quantity u for such 
a dislocation will be equal to 

lJ = 
BEZS 

2n (1 - v) (.zP + z2*) (1.8) 

Let us place an inclusion at the point (zl,z2) and calculate the driving force acting on 
it, using Eqs.Cl.7) and (1.8) 

The trajectory of the mobile inclusion is a solution of the equation 

dz,ldx, = r,/r, = (xa2 - ~,~)/(2x,x,) (1.10) 

The general solution of (1.10) has the form 

z12 + zz" = cx, (C = const) (1.11) 

The family (1.11) represents a set of circles touching the 5% axis at the origin of 

coordinates (with the centres lying on the x1 axis); according to (1.9) the motion of the 

inclusion along the circle is anticlockwise when s,>O and B>O, and clockwise when 
xl<O). Thus the mobile inclusions are attracted to the core of the edge dislocation from 

the side of extension. 
Using the invariance of the r-integral, we can prove the following law of action and 

reaction; if a certain singularity A brings about a configurational force I? acting on another 
singularity B, then a configurational force F equal in magnitude and opposite in direction 
will act from the singularity B on the singularity A. 

If a smooth accumulation of inclusions is distributed within the material, then the force 

rl driving the edge dislocation, according to (1.9) and the law of action and reaction, will 
be equal to 
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(1.12) 

c 6 = -k na2Npi, 
3 ) 

Here rm is the external shear stress in the plane r8 = 0,N is the number of inclusions 
per unit volume, plnc is the inclusion density and 6 is the mass of the inclusions per unit 
volume. The first term in (1.12) is the Peach-Koehler force, and the second term represents 
the force induced by the accumulation of inclusions. 

Interaction between inclusionsanda crack. Let an inclusion be situated in the neighbour- 
hood of the front of a crack of normal discontinuity zh = 0, I~ < 0, -oo <xs< +a~. The polar 
coordinates of the inclusion are r and 0 (in the plane zl) = 0). In this case we have (k'~ is the 
stress intensity factor) 

u = I/%(1 + Y) K,r-“8 cos (e/2) (1.13) 

Using (1.7) and (1.13) we find the components of the driving force in polar coordinates 

(1.14) 

The trajectory of the mobile inclusion is, according to (1.14), a solution of the equation 

rdeldr = relr, = tg 012 
and this implies that the family of trajectories (cardioids) will be 

I/Y = C sin 8/2 (C = COnSt) 

The curves represent closed ovals symmetrical about the r1 axis, and have an internal 
cusp at the origin of coordinates; the inclusions move clockwise when %>Or and counter 
clockwise when za< 0. Thus the inclusions are attracted to the crack tip along its continuation 
(i.e. in the region where fracture has not yet occurred). 

According to the law of action and reaction (1.14) implies that the 

2 
t 

driving force 
of stationary 

0 tTx?- 
P 

of the crack front, when there is a continuous accumulation 
inclusions, is equal to 

rl= +.&S+ LA U+ v) K, ss -cos~drde N Cr. ‘3 
EV/Z;i- r’r. 

(r, = ~,COS e - resin e) 

(1.15) 

Fig.1 
The first term in (1.15) is the Irwin force (due to the external 

load) and the second term represents the force induced by the accumulation 
of inclusions. 

Interaction between an inclusion and a spherical cavity. Let an infinite space with a 
spherical cavity of radius R, be stretched uniaxially by the stress a,=~. The centre of the 
sphere coincides with the cylindrical rz origin of coordinates, and the surface of the cavity 
is free of external loads. In this case the sum of the normal stresses (J in an elastic body 
will be equal to /17/ 

(Ra = ra + z”) 

Let an inclusion be present at some point of the body, and let a driving force with 
components 

r = 151,Ap(l+v) rR,J(C'-rr') 
I. A (7 - 5v) fi, 

r 
I 
= iSb,Ap(i fv) zR$(2'- 3r') 

E(7 - 5~) R' 

act, according to (1.7) and (1.16), on this inclusion. The velocity of the moving inclusion 
has the same direction as the driving force, therefore the trajectory of the inclusion is an 
integral curve of the following equation: 

dr 
dl = 

r (422 - r’) 

z (22'- 3r') 

Fig.1 shows, in a qualitative manner, the trajectories of motion of the inclusions. me 
see that the inclusions move into the most stressed zone of tensile stresses near the cavity 
(the hardening effect of the inclusions). 
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Continuum theory of inclusions. Let a rigid body Contain a very large number ut smdll 
inclusions (a cloud or accumulation. In the asymptotic approximation discussed here the 
inclusions can be regarded as non-interacting. The external stresses will be assumed to be 
fairly small, so that the motion of the inclusions will be subcritical. 

The rate of drift of the inclusions vd will be assumed (as is usually done in the linear 
theory of diffusion), to he directly proportional to the driving force I? /12, 18/, i.e. 
"d = qr where 9 is the empirical coefficient ofthemobility of inclusions. Here the inclusion 
mass transport equation will have the form 

aSi& = (D6*& _ f$-‘h,d6o&r (Ic = 1, 2, 3) (1.17) 

Here D is the selfdiffusion coefficient of the inclusions, t is the time and s (1, 2,, X,, za) 
is the mass of the inclusions per unit volume. The canstants ~1~ A and D depend on the 
temperature of the body. 

Eq.(L.17) canbe written for inclusions of one and the same type, with the same coefficients 
D, q and A\. The total number of equations is equal to the number of types of inclusions. 

The effect of other external fields (e.g. an electric, thermal or chemical field) on the 
motion ofthe,inclusions is studied using well-known methods j12, 18/, and additional terms 
appear /19/ here in Eq.(l.171. 

Let us give the simplest example of the solution of (1.17). Let the strip O<z,<d be 
subjected to pure bending by the moment M (per unit length). Then, from the elastic solution 
it follows that u,% = 0,s = 0, a,1 = --12 (i -I- y) MP. The equilibrium concentration of the inclusions 
established in the strip as a result of flexure is determined by the solutionof (1.17) when 
as/at = 0. Moreover, when the mobile inclusions are in equilibrium, so that the inclusion flux 
is zero, the condition (1~0 when r,=d, must obviously hold, since physical arguments imply 
that 6>0 always. We find 

The constant CO and be found if the total mass no of mobile inclusions is known. We have 

The solution (L,Y.tl) makes possible e.g. the prediction of the distribution of material 
properties across the strip thickness r provided that the dependence of the corresponding 
property on the concentration of inclusions is known. 

2. Hole-type point defects. Bole-type point defects include vacancies in a crystal 
lattice, varfuus pores and cavities. For sufficiently small sizes (ox when the material 
structure has channels) r the defects can move relative to the lattice under the action of an 
external load and by selfdiffusion. 

We shall model the hole-type defects by a spherical cavity of radiusr,,whose surface is 
free from external loads. We shall assume that the distance R between the holes is much 
larger than F. (in practice, fi > br, is sufficient, i.e. the relative porosity of the material 
in question should be less than 0.07). Under this assumption the hole becomes a source of 
an asymptotically singular perturbation (of order O(R-%) in displacements) and it can be 
regarded as some "quasiparticle" /G-16/. A driving (configurational) force r(r,,I‘,,T,f acts 
on the hole, as well as on any source of perturbations, and its components are given by Eq. 
(0.11. 

In the physical Literature (e.g. /I.-7/the vacancies and micropores are described by 
Eqs.cl.1) with g<O. Thereby the micropore is regasded as a centre of compression with a 
specified Coefficient for a singularity which is independent of the external field. This 
corresponds to reality only in the case of a uniform volumetric compression g. Howeverr even 
in this case the coefficient accompanying the singularity pros is determined by the external 
field. It appears that the model of a complex, hole-type singularity induced by a field 
developed below, is closer to reality. 

The displacements u+ and u, arising when an elastic space with a spherical cavity of radius 
F, is stretched, will be as follows /37/: 

(2.1) 

(2+5v)R*-3~l# _3+ 

(7 - 5v)fP ( %)I 

(Ra = rz + 2’) 



Here r, z are cylindrical coordinates with origin at the centre of the sphere, and p 
the value of tensile stress ur (along the z axis). 

The stresses can be found from (2.1) using Hooke's law /20/. 
We shall use the invariance of rk relative to 2, and contract z to the surface of 
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is 

the 
spherical cavity. From this we see, using (0.1) and (2.1), that rk = 0. The following general 
result can also be shown: in the case of an arbitrary homogeneous external field, the driving 
force acting on a strip of arbitrary shape is equal to zero (the analgoue of the d'Alembert- 
Euler paradox of hydrodynamics). 

Let us now assume that the external (unperturbed) field still has an inhomogeneous 
component alla0 = A+ and Ar,<p; and that the following displacement field corresponds to 
it: 

u~O=--‘~~VAE-’ 
( 
xl~-xz’+ +x88), u~~=-vAE-lxlx~. (2.2) 

uf = AE-‘x,z, (x8 = z, z12 + xr” = 9) 

Using the invariance of the r-integral (0.1) we shall use the parallelepiped z8 = @, 
xl = fL, 2, = +L with 6/L + 0. 6 -9 00, L 4.00 as Z . This yields, according to the rules of 

r-integration /12-16/ 

with x8 = &+. oa. 
The singular perturbation field (with index s) is determined using 

analogous to those of Sect.1, yield the value of the driving force 

rl = kJ?pAr~ (r, = rs = 0) 

h2 = & [ 129 - 4v + w (123 - 18Ov)] 

(2.3) 

Eqs. (2.1). Calculations 

(2.4) 

We see that the driving force is directly proportional to the external stress and its 
gradient. 

Let us now consider the general case of an arbitrary inhomogeneous external stress field 
u,~~(x~, xg, x1)), satisfying the condition 1 afP 1 > r. 1 ulf,ko I. The coefficients accompanying the 
hole-type singularities will, in this case, be directly proportional to the stresses btjo 
at the site of the hole, and the driving force, as implied by the rules of r-integration, 
will be directly proportional to the stresses utjo and their gradients ul,,ko at the same 
position. Consequently, the energy of interaction between the hole and the external stress 
field will be a quadratic function of the stresses. In the general case of an anisotropic 
body and holes of arbitrary configuration, it will be equal to 

u = CflIJul ells,, (rk = --au/a~~) (2.5) 

where (Cijmn are constants and rk are the components of the driving force. 
In the isotropic case ( a spherical hole and an isotropic elastic body) the energy U can 

depend only on the first and second invariant of the stress tensor u and on I at the given 
point. Therefore it can be written as follows (a and fi are certain constants): 

u = ,!Fr,* (au* + jV) (r, = -6TJl8xk) (2.6) 
a = u11O + o**O + asa0 

I = alloa**o + o*,"a~f + %l"%l, O - (0,:)” - (%a?’ - OJrso)’ 

Let us find the constants a and p. In the case of a uniform volumetric expansion u,,o= 
'/,(J6~f (a> 0) the hole will obviouslybehave as a centre of compression (1.1) and the energy 
of its interaction with the external field, according to (1.7), will be equal to -l.,u*r,*/(GE). 
This, together with (2.6), yields 

3a + p - -n (1 - V) (2.7) 

In the other case studied, when e,,O =p,ug,r =A, and all remaining stresses are zero, 
the interaction energy, according to (2.41, will be equal to -l.,qflpAr,a, and according to 
(2.6)- 2a,?FpAzlro8. Therefore a = --'I& and taking (2.7) into account we have 

a = --‘/,&, B = Vsh, - 51 (1 - v) (a < 0, B > 0) (2.6) 

Relations (2.5) and (2.6) represent, in the case of a force drivingahole-typesingularity 
induced by the field, an analogue of the Peach-Koehler formula in the theory of dislocations; 
and of the Irwin formula in the theory of cracks. According to these relations the driving 
force tries to shift the hole into a more highly stressed zone (irrespective of the sign of 
the stress). Thus the behaviour of the hole is sometimes different in kind from the behaviour 
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of the model vacancy adopted in the physical literature and described by the Eqs.(l.l) for h 
given p<O. For example, when the state resembles a volumetric expansion, the hole behaves 
more like an inclusion. 

Continuum theory of holes. Let a dense elastic material contain a very large number of 
small holes, which can be described in terms of a continuous distribution of an accumulation 
(or a cloud) of holes. The resistance against the motion of a hole depends on the properties 
of the material, and the size and shape of the hole. We shall assume that the motion of a 
hole is subcritical and occurs under the action of external stresses and thermal fluctuations 
(we neglect the interaction between the holes themselves). 

A flux of holes is obviously equivalent to a flux of matter (moving in the opposite 
direction). Therefore the diffusion of the holes leads to the following equation of mass 
transfer: 

wat = (DE,k),k + (qU.h.).h. 

(8 = (PO - P)iP,, rK = ---,A., vd = $) 
(2.9) 

Here t is the time, 8 is the porosity, p (zl, x8,z8, t) is the macroscopic density of the 
material required, D is the selfdiffusion coefficient of the holes, I) is the hole drift 
coefficient and PO is the density of the material without holes. The second term on the 
right-hand side of (2.9) was obtained with the help of (2.5), under the usual assumption that 
the hole drift rate is directly proportional tothe driving force /12/. 

We should supplement Eq.(2.9) with the equation of the theory of elasticity 

O~j,j=O,~(Ui,j+Uj,i)= I+’ ---g-- uijo - + l&&j 

For a porous body it is natural to adopt the "rule of mixtures" /15/ 

E = &,,pipmar (2.11) 

The closed system of Eqs.(2.9)-(2.11) enables us to study the evolution of the accumulation 
(cloud) of holes and the gradual formation of the weakened, crack-line high porosity zones. 

Interaction of the holes with the crack front. Let a hole of radius r. be situated in 
some neighbourhood of the crack front of the normal discontinuity @ = x, O<T<CQ, --cy) <z< 
33 (r, 8, 2 are cylindrical coordinates). The stress field will be 

(r,O = KI (21~9~‘1: (co5 8/2 + ‘is sin 0 sin W2) (2.12) 

CT& = KI (2109~‘/: (cos O/2 - ‘I, sin 0 sin W2) 

T,@O = Kr (2~r)-‘l* sin 8 cos 012, uz = 2v& (2nr)-‘/: cos e/2 

The components of the driving force will, according to (2.61, be 

r, = -au&, re = -PauIBB 

U = rpSKIP (2nEr)-l cme 0/2 [4a (1 -j- v)* + p (41, + co@ e/2)1 
KY = 2 (1 + Y) Kr (2nr)-‘iz cos O/2, I = Kla (2nr)-’ COP O/2 (4~ f 

COSB e/2) 

Using (2.12) and (2.13) (r, I_3 are the hole coordinates), we obtain 

(2.13) 

I?, = r,8K,= (2n.W)” cos2 812 I4a (1 f v)~ f f~ (42, f GO@ W2)l 
I’e = r,,SKIa (2nEfl)-1 sin 0 [2a (1 + Y)~ -+ /3 (2~ + co9 e/2)1 

(2.14) 

We see that rr is negative for all 0 in the range O<e<n, i.e. the hole is always 
attracted to the tip of the crack. The trajectory of the mobile hole is shown qualitatively 
in Fig.2. 

The family of trajectories is determined by integrating the equation 

u,lve = d In rJd0 = r,lre 

Depending on the relative size of the mobile holes rO and the opening of the crack at 
its tip 26,, the flow of the holes towards the crack tip can lead either to retarding the 
development of the crack, or to reducing the resistance even to subcritical growth of the 
crack. Moreover, the presence of the holes leads to a change in the driving force of the 
crack front. Let the cloud of holes be distributed in the material in such a way, that there 
are N holes per unit volume (the porosity of the material is e =4/$%Nr,8). Summing the forces 
induced by the external load and the holes, we obtain 

j N(r,cosO-rresinO)rdrdO (2.15) 
-zT 
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Fig.2 Fig.3 

Here r is the force driving the holes and L is the characteristic length of the crack 
(or the body). The first term in (2.15) is the Irwin force (from the external load), and the 
second term describes the force induced by the cloud of holes. 

In the case when the holes are uniformly distributed, N and e are independent of 2: and 
0 and we can use (2.14) to find that the second term of (2.15) is equal to zero. 

Interaction between holes and a dislocation. Let a hole of radius r,be acted upon by 
the edge dislocation field 

Here B is the Burgers vector and the remaining notation is as above. 
Using (2.13) and (2.16) we calculate the components of the force driving the hole (r,e 

are the hole coordinates) 

(2.17) 

We see that the hole is always attracted towards the core of the dislocation. 
According to (2.17)) the trajectory of the mobile hole is of the form depicted qualitatively 

in Fig.3. 
If the cloud of holes is distributed throughout the materials, then the force r driving 

the edge dislocation will be equal to 

L +n 
r=Bz,- 1 S rN,(r,cose-rresine)drde 

'd-II 
(2.18) 

Here. rd is the radius of the dislocation core, L is the characteristic length of the 
body, and T, is the external shear stress in the plane of the dislocation. The first term 
is the Peach-Koehler force, and the second term is the force induced by the cloud of holes. 
When the holes are distributed uniformly, the second term vanishes. 

The proposed force-based approach is purely asymptotic, therefore the formulas obtained 
hold also for the plastic and finite deformations provided that the domain of non-linearity 
near the pore is small compared with the distance separating the pores from each other, and 
with the distance between the pore in question andother sources of perturbation /19/. 

The author thanks R.V. Gol'shtein for reading the manuscript and for checking the 
calculations. 
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VORTICAL FLOWS AND CANONICAL EQUATIONS OF MOTION OF A MAGNETIZABLE, 
PERFECTLY CONDUCTING FLUID* 

V.B. GORSKII 

The classical Kelvin's circulation theorem and Helmholtz theory on the 
motion of vortex lines with the fluid and conservation of the strength 
of vortex tubes are generalized to the case of the vertical adiabatic flows 
of a magnetizable, perfectly conducting fluid. Canonical variables are 
found and canonical Hamiltonian equations of motion are obtained. 

1. The equation of motion of the fluid in question has the form**(**Golosov V.V., 
Vasil'eva N.L., Taktarov N.G. and Shaposhnikova G.A. Hydrodynamic equations for polarizable, 
magnetizable, multicomponent and multiphase media. Discontinuous solutions. Study of 
discontinuous solutions with a jump in magnetic permeability. Moscow, Izd-vo MGU, 1975) 

dv 
P~=---Pf~ Bk VH,+[jx$]; 

p=po+~lS[p-_p($)~,H]BdH 
0 

(1.1) 

where j is the electric current 
temperature, PO is the pressure 
remaining notation is standard. 
magnetizable medium 

density, B = p (p, T, If) H is the magnetic induction, T is the 
of the normal fluid without the magnetic field, and the 
We will use below the Gibbs thermodynamic identities for a 

dU=IdS+$dp+Hd+, dlY = T dS -t %+Hd+y= 

~=u~+~{H.,S[T(~,,,~-~]EdH 

G.2) 

Here U,W,S denote, respectively, the internal energy, enthalpy and entropy per unit 
mass of the fluid, and the zero subscripts denote the parameters without a magnetic field. 

Using relations (1.2) we can write (1.1) in the form 
, 
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